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We study the propagation of electromagnetic waves through arrays of perfectly conducting cylin-
ders for both fundamental polarization cases s and p. We use a generalized Rayleigh identity method
and show that for p polarization the fundamental band defines an effective refractive index not in
keeping with electrostatics. We exhibit the photonic band structures for very dilute arrays, where
they tend towards the expected free-propagation form. We also study them for arrays approaching
touching, where very interesting differences between s and p polarization behavior are manifest.

PACS number(s): 41.20.Jb, 42.25.Fx, 71.25.Cx

I. INTRODUCTION

The idea that singly, doubly, and triply periodic di-
electric lattices can be designed to possess photonic band
gaps has attracted wide attention, both theoretically and
experimentally [1,2]. The absence of electromagnetic
modes inside a photonic band gap can lead to unusual
physical phenomena. Thus, atoms or molecules embed-
ded in such a structure, called a dielectric crystal, can
be locked in an excited state if the energy of this state,
relative to the ground state, falls within the photonic
band gap. In this case, the atoms (or molecules) are also
expected to exhibit an anomalous Lamb shift. At the
same time, in a dielectric crystal new types of electron-
photon interactions appear leading to a specific behavior
of light. However, the three-dimensional dielectric crys-
tals have a quite complex structure and their fabrication
is difficult, particularly for the optical and near-infrared
regions. A promising type of photonic band-gap materi-
als consists of arrays of dielectric material periodic along
two axes (z and y) and homogeneous in the third direc-
tion (z). Although this structure reflects only in-plane
incident waves, there are several applications where this
is sufficient [3].

The most widely used theoretical approach in calcu-
lating the photonic band structures relies on the treat-
ment of the full vector Maxwell equations by means of
plane-wave expansions [4-6]. In this method, the field
and the dielectric constant are expanded in infinite se-
ries of plane waves, so that the problem is reduced to
an infinite-dimensional eigenvalue problem. Due to the
fact that the plane-wave expansions converge slowly, this
method requires a large number of terms in the series,
in order to obtain accurate numerical results. By trun-
cating the series, the high-frequency components are re-
moved. Also, the dielectric constant is poorly estimated
near spatial discontinuities [7-9]. For metallic systems
at high frequencies the dielectric constant may exibit a
very large imaginary part and the plane-wave expansions
become impractical [10]. The numerical techniques used
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to avoid these difficulties still require the evaluation of
large determinants by complicated and time consuming
algorithms.

In.a series of papers we have extended Rayleigh’s tech-
nique [11] from electrostatic to full electromagnetic prob-
lems, for singly [12-14], doubly [15-17], and triply [18]
periodic systems. Rayleigh’s method involves a set of
lattice sums which consists of sums over terms with a
function evaluated at each lattice point, and the evalua-
tion of lattice sums is the most important and subtle part
of this technique. The main reason is that the definition
of lattice sums involves conditionally converging series
over the direct lattice, and a direct evaluation is thus
impractical if high accuracy is needed. The lattice sums
involved in our method are represented in terms of ab-
solutely converging series over the reciprocal lattice, and
in contrast to the method used by Ewald [19], these se-
ries may be accelerated by successive integrations to any
order. By introducing the lattice sums, we obtain a rep-
resentation of the Green’s function in terms of a rapidly
convergent Neumann series. Also, the representation in
terms of absolutely converging series allows us to have
some physical insight into the analytic properties of the
lattice sums. For the coeflicients in the multipole expan-
sions of fields we have obtained a generalized Rayleigh
identity. Our method is capable of studying, numerically
and analytically, problems in which the dielectric con-
stant is piecewise constant and may take finite or infinite
values. Generally, our method may be applied when the
cylinders are composed of an arbitrary number of coaxial
circular shells filled with materials having different com-
plex dielectric constants.

In this paper we study the electromagnetic proper-
ties of a two-dimensional photonic band-gap material,
structured as an array of perfectly conducting cylinders.
For isotropic and homogeneous matrix and inclusions,
Rayleigh’s theory applies equally well to the computation
of effective dielectric constant or effective conductivity of
a composite. Here, we use the term “perfectly conduct-
ing cylinders” as a more familiar term, substituting for
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what are precisely “infinite refractive index cylinders.”

We will study the rapidity of convergence of our
method, showing that for dilute arrays of cylinders only
a small number of terms in series is needed, while for
closely packed arrays the number of terms increases. We
will also use our formulation to study the question of ho-
mogenization [20-26], i.e., the attribution of an effective
refractive index to our system consisting of cylinders of a
specified (infinite) refractive index separated by a matrix
of another refractive index. The formulation we use has
the potential to yield new insights into the conditions for
the validity of the homogenization process, since it pro-
vides a solution of Maxwell’s equations for this system,
but has at its core an electrostatic formulation yielding
the homogenized solution.

Some of the ideas presented here can also be found in
[27] and [28], where the problems are discussed of scat-
tering by a finite set of parallel cylinders, of arbitrary
cross section [27] or circular [28], randomly distributed
in a finite region of space.

II. THEORY

We consider the following diffraction problem: a plane
electromagnetic wave propagates through a periodic ar-
ray of perfectly conducting cylinders embedded in a host
medium. The cylinders are of infinite length and radius
a, with the axes parallel to the z axis. The incident
plane wave is characterized by its wavelength A and the
wave vector |kg| = 27/, perpendicular to the axes of
the cylinders.

The geometry of the array is defined by the fundamen-
tal translation vectors €; and €, the origin being one
node of the array (see Fig. 1). These vectors are not
necessarily orthogonal, nor are their lengths necessarily
equal. Thus, the vectors from the origin of coordinates
to the pth node of the array are specified by a set of two
integers:

R, =pi€; + ps€; , (1)

S/
.7 7
T A

/7

FIG. 1. The two-dimensional lattice. The primitive cell A
(dashed area) is defined by the fundamental translation vec-
tors €, and €2. We also mark the unit cell U (the Wigner-Seitz
cell).

/

where p = (p1,p2) € Z2. We denote by A the primitive
cell of the array and by A = [€; X €;| the area of A.
The primitive cell of the reciprocal array is defined by
the vectors

ax 81

~ e xa
u1=27re2 a , U =27 1 (2)

A

where a = (€; x €;)/A. The vectors from the origin to
the hth node of the reciprocal array have the form

Kp =hit; +hotia , h= (hl, hz) € 72 (3)

In the case when the host medium is an isotropic ho-
mogeneous dielectric in which the electromagnetic wave
has the wave number k, the equations for the components
of the electric and magnetic fields decouple and each field
component satisfies the Helmholtz equation. The wave
vectors ko and k are parallel to the zy plane, therefore
the components of the fields are independent of z. At the
same time, the problem can be reduced to solving two in-
dependent problems: (i) for the s polarization (or TM),
when the electric field is along the z axis perpendicular to
the plane of propagation, and (ii) for the p polarization
(or TE), when the electric field is parallel to the plane of
propagation [29].

Consequently, the field components are given by the
solutions of the two-dimensional Helmholtz equation:

(V2+E*)V =0, (4)

where V = E,, H, for the s, p polarizations, respectively,
with the boundary conditions at the surface (0C}) of each
cylinder:

VIBCP =0 , s polarization, (5)
15]

v =0 , p polarization, (6)
on 8,

respectively, the field component and its normal deriva-
tive vanishing. In addition, the fields are also required to
satisfy a quasiperiodicity condition:

V(r+R,) = e*oRe V(). (7)

The quasiperiodicity condition follows from the Bloch
theorem, stating that the field on the pth cylinder de-
pends explicitly on the cylinder position (R,) through
the phase factor exp (iko - R;) [30].

Therefore, we have to solve a Dirichlet problem for the
s polarization and a Neumann problem for the p polar-
ization. For both problems, the Green’s function is the
elementary solution of the inhomogenous equation:

(Vz + kZ) G = —-21 Z o(r—R, — p)eikO-R”, (8)
P

and satisfies the quasiperiodicity conditions

G(r + Ry, p) = etko Ry G(r, p), (9)
G(r,p+ R,) = e" kR G(r, p). (10)

When the vector r — p is restricted to the unit cell cen-
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tered at the origin of coordinates, the Green’s function is
unique and takes a form [16,17] corresponding to a source
within the central unit cell and a sum of the sources
within other unit cells:

G(r,p) = — SYo(klr - p)

™ bt .
-3 S SY (k ko) Je(klr — pl)e™*,  (11)

£=—oc0

where, if r > p, a = arg (r — p). Also, J, Y are Bessel
functions of the first and second kind, respectively. The

coefficients S} are lattice sums given by the formula
[16,17]

57 (k ko) Je4m (k)
B 1 s (m—mn)! 2\
= - [Ym(k) + p ; "(“n_—l), (E) de,0
24 EN™ Jexm(Qr) ieo,

where Qp = ko + K, 0, = arg (Qn), and m is an ar-
bitrary non-negative integer used to improve the conver-
gence of the series in (12). Since the Green’s function
(11) is unique, the form (12) for the lattice sums S} is
also unique.

In polar coordinates, the solution of (4) has the general
form

V(r,0) = f: [40)Je(kr) + B Ya(kr)] €2, (13)

£=—o0

where ~ labels the polarization (s or p). The coefficients
A,(Z'Y) and Bﬁ) are related by Ag‘Y) = —Mt('y)Bl('Y), with
Mp) given by the boundary conditions (5) and (6):

(e) _ Ye(ka)

- () _ Y, (ka)
£ = Fyka) M T Tika) (14)
the prime indicating the derivative of the corresponding
function.

By means of (11) and (13), following the method de-
veloped by Lord Rayleigh [11] for static problems and
extended to dynamic problems [15-17], we obtain the
coeflicients Bp) from the generalized Rayleigh identity
[17]:

MPBY + 3 (-1)4™SY_(k,ko)BYY =0. (15)

m=—00

The values k for which the determinant of the homo-
geneous system (15) vanishes are the eigenvalues of the
Helmholtz equation (4), i.e., the wave numbers of the
propagating waves. In the coordinate system k versus
ko, the set of trajectories of eigenvalues when the in-
cident wave vector ko follows the boundary of the first
irreducible Brillouin zone represents the photonic band
structure of the physical system. The lowest values of k
form an “acoustic band,” if £ — 0 when ko — 0 [30]; this

terminology does not mean we refer to an actual acous-
tic wave, but rather to an electromagnetic wave whose
dispersion curve resembles that of the acoustic band in
phonon dispersion theory.

The null vectors {By’) (k)} corresponding to each al-
lowed wave number k define the field component V,
through Eqs. (13) and (14). In turn, V defines com-
pletely the electric and magnetic fields through

)

= = z V
E=(0,0,V), H kozosz , (16)
for s polarization, and
H=(0,0,V), E=-’—kZ—°axvv, (17)
0

for p polarization. Here, Z represents the unit vector
along the z axis and Zp = +/po/co is the free space
impedance.

III. THE QUASISTATIC LIMIT AND
HOMOGENIZATION

To compute the set of dispersion curves, we concen-
trate on general values of ko avoiding values invariant
under any of the symmetry operations from the lattice
symmetry group. We may then use the lattice sums as
defined in (12). If the Bloch momentum kg is invariant
under some of the symmetry operations from the lattice
symmetry group, we have to analyze in detail the behav-
ior of the lattice sums in such a special case.

Thus, for any lattice a point of high symmetry is ko =
0, and in the system k versus ko, we may distinguish
two cases [30]: (i) ko = 0 and k # 0, giving the central
point on each optical band, and (ii) ko — 0 and k = akg
for the acoustic band. In the first case, the lattice sums
are simply obtained by replacing Q; with K, in (12).
The second case represents the quasistatic limit when the
linear system (15) takes the form of Rayleigh’s identity
for the relevant lattice in an electrostatic field. To explain
the meaning of the coefficient a we have to take into
account that, for the present problem, k, = 0. According
to Bloch’s theorem the phase difference of V' between
z=—-d/2and z =d/2is

A® = kod = N'kd, (18)

an equation defining the effective phase refractive index
(W) of the array. Hence

1_ ko
a  dk |

N = (19)

The question of constructing equivalent continuous
media to composite materials is a very old one in physics,
being linked with early work on the relationship between
atomic and continuum models, by Faraday, Clausius,
Mossotti, Maxwell, Lorenz, Lorentz, Rayleigh, Maxwell-
Garnett, and others [31]. It is also a topic of much re-
cent work in applied mathematics, where it tends to be
referred to as homogenization theory [20-26].

In order to study the quasistatic limit and the corre-



1138 N. A. NICOROVICI, R. C. McPHEDRAN, AND L. C. BOTTEN 52

sponding expression of the effective refractive index A/,
we have to find how the coefficients 31(7) in (13) depend
on k. First, we consider p polarization with the bound-
ary conditions (6), so that the field component (13) takes
the form

& [Jelkr)  Ya(kr)
H,(r,0) = — Z I:JZ(ka) _ 1é(ka’)

£=—o00
- [Jo(kr) )J,Z,E:Z; - Yo(kr)] B

o~ [Je(kr)  Ye(kr)
2 [Jé(ka) Ye’(ka)]

] Yt’(ka)Bép)e"“’

=1
XY (ka) [B{Pe*® + (—1)*BZ)e=*] . (20)

By substituting the expressions of Bessel functions and
their derivatives for small arguments [32], we obtain

1/2\* 2
H,(r,0) ~ [; (E) + ;lnv(kr)] By

S0+ ()]
% (El(P)eilG + E(_”l)e""") , (21)

where Et(p) = Yt’(ka)Bt(p), with, for later use, E((,p) =
Yy (ka)B((,p ). From (17), we have the electric field given
by the formula

E=z2xVV¥, (22)
where we have denoted

¥(r,0) = — %o

2(r,0) . (23)

In the quasistatic limit k¥ = ako, so that (23) may be
written in the form

¥ o)~ _ianﬁ [(1>2 +2In (kr)} By

ka k
oo
. 1 [/r\¢ a\t
+’L(1Z0az Z [(E) + (;) :l
£=1
x (B e 1 BO)e0) (24)
In Rayleigh’s theory for an array of perfectly conduct-
ing cylinders in an electrostatic field, the electric poten-
tial in the host medium is the solution of a Dirichlet
problem for the Laplace equation, and the electric field
has the form [11,33,34]

E=-Vop, (25)
with

o(r,0) = -i [(2)1 - (g)l] %cos (¢6).  (26)
£=1

The same electric field is given by the solution of a Neu-

mann problem for the Laplace equation. Now, the elec-
tric field is produced by a “magnetic” potential:

E=%xVy, (27)

with

P(r,0) = —i [(2)‘ + (;)‘] %sin (t6).  (28)
£=1

We mention that the potentials ¢(r,8) and ¥ (r,8) form
a Cauchy-Riemann pair, so that Vo = —Z x V. Also,
the coefficients b, are assumed to be real, and the applied
electric field is oriented along the z axis or y axis. For an
arbitrary orientation of the applied field, the coefficients
b, are complex, and we obtain

o0 = 5 5[+ (1) e e e,
=1

(29)

where the asterisk denotes complex conjugation. The
corresponding expression for ¢ is

ot =552 C) ] oz e
£=1
(30)

In the case of p polarization we have a Neumann prob-
lem for the Helmholtz equation, and for small & we have
obtained Eq. (24). The comparison between (24) and
(29) suggests that, for £ # 0, the coefficients Bt(p), to
leading order, are independent of k. Also, in order to
remove the logarithmic divergence in (24), we have to
assume that the coefficient B((,p ) is proportional to k2.
The first term in the coefficient of B((,p ), proportional to
1/k, does not depend on r and, therefore, does not con-
tribute to the electric field in (22). It corresponds to a
surface current on each cylinder.

By substituting the coefficients B[(p ) in (15), after some
algebraic manipulations, we obtain the homogeneous sys-
tem

oo

S [ome+ cverm Dy k)| B o

m=—00

(31)

Here, 6,,¢ represents the Kronecker symbol, and —oo <
f < co. Next, we use the dipole approximation. This
means truncating the system (31) to —1 < £,m < 1. For
small arguments the ratios of the derivatives of Bessel
functions become [32]

J, (ka) ka\®>  Ji(ka) ka
Yi(ka) =" (7) * Yika) "2
Jy(ka)  (ka)®

C dolka) (k_a_)2 62

Yi(ka) ~ " 4 Y/ (ka) 2
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For the derivatives of Bessel functions of negative order
we use the relations J’ ,(z) = (—1)*J¢(z) and Y/ ,(2) =
(=1)*Y(2).

From (12) we obtain the expressions of the lattice sums
S}’, for ko — 0 and k = ako [where for analytic calcu-
lations it is convenient to choose m = 0 in (12)]. In this
limit Qn ~ Kp and k < Kp,, Vh # (0,0), while Qo = ko.
The only lattice sums involved in the dipole approxima-
tion are the lattice sums of order £ = 0,1, 2:

4 1 Jo( Kh)
86 ~ = A Z » (33)
A k3(1 - a?) A =
SY ~ —i% P% ¢i% _ -kBA Jl}{-’gh) i,
sa(l —a?) hz0
(34)
s¥ 2 1 aie 32 5~ J2(Kh) e
2 7 A k2a2(1 - a?) kA K ’
(35)

where 0y is the polar angle of ko, and 0}, = arg (Kj).
Generally, for any array the series in (33) is convergent
)

r a2 1'90
1-1i722 Taa-ay
—210¢ e—iGg
| —f—z —fma—)

with f = ma?/A. The unknown E((,p ) /ko is finite because,
for small ko, Yy (ka) = —Y1(ka) ~ 2/(mwka) and we have
assumed that B((Jp) ~ k2, so that E((f) ~ k = akq. Also,
even if g(()p ) depends on a, the value of a is fixed by
the condition that the determinant of the homogeneous

linear system (40) has to vanish.
The determinant of the system (40) is

A -a)i-a*(1+1)], (41)

and vanishes if > = 1/(1 + f). Hence, the effective
dynamic refractive index of the array, in the dipole ap-
proximation, is

AP = =(1-

Na=(1+f)Y2. (42)

Also, the components of the normalized null vector have
the form

se>_ 1 |gw|*_ _kia®
‘B:i:l = 2+k2 2 ‘ 1 2+ k2a?’ (43)
B = i(koa)e=% B®) = i(koa)e'® B . (44)

Note that, in the dipole approximation, these results are
true for both the square and hexagonal arrays of circular

1139

and gives a constant, while the series in (34) vanishes
identically. The series in (35) vanishes in the case of a
square or hexagonal array. In the system (31) the loga-
rithmic term from (33) is multiplied by J;(ka)/Y/(ka),
therefore, in the limit £k — 0, it does not contribute to
the coefficients of BE) in (31). In order to use the sim-
plest form of the lattice sum S} , in what follows we will
restrict our calculations to square or hexagonal arrays.
Consequently, the dominant terms for the lattice sums
(33)—(35) are

4 1

y o _ %2
5o AR(A-a?)’ (36)
4 1 ;
Y _ sz 109
ST A _kga(l _—— e, (37)
Sy ~ 41 e (38)

A kio2(1 - a?)

The lattice sums of negative order are given by the com-
plex conjugate of lattice sums of positive order [16]:
SY,(k ko) = ¥ " (k, ko) . (39)

Finally, the system (31) reduces to

f 21.90 W
1=a® | [ 5%
oaetf 0o (p) —
fa-ae iBY [ko | =0, (40)
_ f a2 §§P)
1—a? )

cylinders, while for rectangular arrays and for the oblique
array we would expect Ny to depend on the incidence
angle 6. We have verified numerically the form (44) of
the null vector by using a high order solution of (31) at
low volume fractions, with small ko.

In Table I we display numerical results confirming Eq.
(42). N and N display converged numerical results,
respectively, coming from Maxwell’s equations, by means
of (15), and electrostatics [33]. The fourth and sixth
columns display solutions of the same equations in the
dipole approximation, Eq. (42) for Maxwell’s equations

TABLE 1. The effective refractive index (N) of a square ar-
ray of perfectly conducting cylinders, for different area frac-
tions (f = ma?). The system (15) has been truncated to
—20 < £,m < 20. We also display the dipole approximation
(Na) as well as the corresponding results of electrostatics (Noo
and Ng).

a f N Na Noo Ny
0.26 0.212 1.1013 1.1011 1.2408 1.2407
0.30 0.283 1.1334 1.1326 1.3381 1.3373
0.34 0.363 1.1736 1.1676 1.4663 1.4631
0.38 0.454 1.2151 1.2051 1.6435 1.6311

0.42 0.554 1.2782 1.2467 1.9135 1.8672
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and the Maxwell Garnett formula:

1/2
Ni= (i—j—;) : (45)

for electrostatics. It can be seen that the dipole approx-
imation is accurate for small area fractions, but loses
accuracy with increasing area fraction. Note the clear
difference between the effective dynamic refractive index
(V) and the refractive index (N,) derived from the ef-
fective static dielectric constant. Note also that the dif-
ferences between the dipole approximation and the con-
verged results are comparable for the results of Maxwell’s
equations and electrostatics.

In the case of s polarization, the Rayleigh identity (15)
takes the form

> (e + (-1ytem L

m=—00

(46)

with B{Y = Yo (ka)BY). Now, the electric field is given
by (13) and (5):

Ba(r,6) = - z_: [Jl(ka)
[
J, (kr)
‘Z [Jﬁ (ka)

xY(ka) B + (-1t BG)e ). (47)

Y (kr)
Ye(ka)

] Yy(ka)B{"e®

Yo(kr)} B

mkr)]
Ye(ka)

and in the quasistatic limit becomes

E.(r,6) ~ [% In (r/a)] BY

[

£=1

< (B9 + B 0).

The magnetic field is determined by (16), so that we have

to assume that, to leading order, Bé’) is proportional to
k. Note the correspondence in form between Eqgs. (48)
and (30).

In the quasistatic limit, for the dipole approximation,
the coefficients in (46) are given by (36)—(38) and

Jy (ka) ka\®  Ji(ka) _ ka

Yi(ka) = " (7) Yo(ka) ~ " 4ln (ka) ’
Jo(ka) ka Jo(ka) 1

Yk~ "D Yalka) " "m0 49

By substituting in (46), for —1 < £,m < 1, we obtain the
homogeneous system:

Again, the unknown B(()s) /ko is finite at ko = 0, as we

have assumed that, for small ko, BS") ~ k = ako. The
determinant of the system (50) is

A® = _(1-f)2#0, Va. (51)

This means that the system (50) admits only the trivial
solution. Therefore, there is no acoustic band for per-
fectly conducting cylinders, for s polarization (see Figs. 2,
3, 4, and 5). The minimum value of k is always greater
than zero, and we have a complete photonic band gap,
which starts at ¥ = 0 and extends to a cutoff frequency
defined by kmin (the lowest value of k when the incident
wave vector ko follows the boundary of the first irre-
ducible Brillouin zone). This result has been shown by
Smith et al. [35], in the case of a square array of per-
fectly conducting cylinders, by using a real space finite
difference method.

6o 2i6 1
1 —f ¢ e (s
+f 2 fa(l—az) 1-a? BY)
ae 0 -1 aetfo %Bé’)/ko =0. (50)
—2i6, —i6o 3(s)
e _ e B
L f 1-a? f a(l—a?) ] !

IV. NUMERICAL RESULTS
A. Convergence and validation of the method

An important question concerning the Rayleigh iden-
tity (15) is the number of terms which must be retained
when the infinite sum is truncated in order to generate
results of a specified accuracy. In Fig. 6 we show the pho-
tonic band structure of an array of perfectly conducting
cylinders with a low volume fraction, for, respectively,
s and p polarization. The bands are shown for several
values of the truncation parameter L, where m in Eq.
(15) is summed from —L to L. [Hence, the zeros of the
determinant of a matrix of size (2L + 1) x (2L + 1) are
located numerically in order to find allowed values of k
for a given ko. A simple bisection and iterative refine-
ment [36] is adequate to locate these multiple zeros. For
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kd/n

X M

FIG. 2. Photonic band structure of a square array of per-
fectly conducting cylinders in air, for p (—) and s (- - -)
polarization, with L = 3. The ratio of the cylinder radii to
the array constant is 0.02 (with the area fraction f = 0.001).

the Bessel functions and solution of the system (15) we
have used the double precision subroutines from AT&T
(ftp address netlib.att.com). Care must be taken in the
search procedure to avoid k values for which either the
lattice sums are singular, i.e., k = |Qp| for some recipro-
cal lattice vector Qp, or a Bessel function occurring in a
denominator in the matrix vanishes.]

It is evident from Fig. 6 that the photonic band struc-
ture stabilizes rapidly as L increases, for small f. The
band diagrams in Fig. 6 can be compared directly with
that shown in Fig. 1 of Ref. [35]. A very satisfactory
agreement is evident between the results of these two
very different methods. The band diagrams differ signifi-
cantly in only one small region (the neighborhood of the
point M), where the Rayleigh method indicates a defi-
nite gap between two branches, which almost touch in
the results of Smith et al. [35].

The results for a higher area fraction shown in Fig. 7

X
k'
min
53
© e ) N - k max
£~ "’/‘-; """"
| k 7
r min
0
M T X M

FIG. 3. Photonic band structure of a square array of per-
fectly conducting cylinders in air, for p (—) and s (- - -)
polarization, with L = 8. The ratio of the cylinder radii to
the array constant is 0.26 (with the area fraction f = 0.212).
The shaded region is the second in-plane band gap for s po-
larization.

kd/m

M r X M

FIG. 4. Photonic band structure of a square array of per-
fectly conducting cylinders in air, for p (—) and s (- - -)
polarization, with L = 8. The ratio of the cylinder radii to
the array constant is 0.34 (with the area fraction f = 0.363).
The first shaded region represents the first in-plane band gap
for p polarization, while the second shaded region is the sec-
ond in-plane band gap for s polarization.

illustrate that bigger values of L are needed as the cylin-
ders come close to touching. There is a slight difference
in the values of k for L = 8 and L = 12 along the sixth
band, but they coincide elsewhere to graphical accuracy.
The convergence of the Rayleigh method for electromag-
netic and electrostatic problems is quite similar, and we
have found that the table given by Perrins et al. [33] for
the static case is a reliable guide to the choice of L in Eq.
15).
( For an area fraction f = 0.70 (a = 0.472), the bands for
s polarization are almost straight lines (varying by only
10~% across the whole range MI'X M) and we obtained
the first band at kd/m = 2.7941, 2.9167, and 2.9173 for
L = 3, 8, and 12, respectively. Once again, the number of

kd/=m

M r X M

FIG. 5. Photonic band structure of a square array of per-
fectly conducting cylinders in air, for p (—), and s (- - -)
polarization, with L = 8. The ratio of the cylinder radii to
the array constant is 0.42 (with the area fraction f = 0.554).
The first shaded region represents the first in-plane band gap
for p polarization, while the second shaded region is the sec-
ond in-plane band gap for s polarization.
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kd/n

M r X M

FIG. 6. Photonic band structure of a square array of per-
fectly conducting cylinders in air, for s polarization, with
L=1(---)and L =3,5( ). The ratio of the cylinder
radii to the array constant is 0.187 (with the area fraction
f = 0.11). The inset shows the irreducible octant of the first
Brillouin zone.

terms specified by Perrins et al. [33] for the electrostatic
problem is a good guide for the electromagnetic problem.

We prefer not to specify computation times for the
results given in this paper, as the code we have used is
far from optimized. Most of the computation time is
spent in evaluating the lattice sums, which could well be
tabulated and stored rather than being reevaluated for
each value of cylinder radius (since the S}' do not depend
on a). Even without this, the calculation of a photonic
band diagram for L = 8 takes around 16 h (elapsed time),
on a Dec Alpha 800 workstation. Plane-wave calculations
of band diagrams typically use supercomputers.

B. Band-gap diagrams for dilute systems

In Fig. 2 we display band structures for square arrays
with small radii. As a tends to zero, the p polarization

kd/nm

M r X M

FIG. 7. Photonic band structure of a square array of per-
fectly conducting cylinders in air, for p polarization, with
L=3(---),L=8(---),and L = 12 ( ). The
ratio of the cylinder radii to the array constant is 0.472 (with
the area fraction f = 0.70).

structures tend to the diagrams appropriate to noninter-
acting plane waves:

2 =k=Qu, (52)
shown in Fig. 8. Note, however, that near symmetry
points such as M, I'; and X, some bands display localized
band gaps, associated with the growth of reflections and
the tendency for plane waves to become standing waves.
These band gaps shrink as a decreases, giving rise often
to degenerate bands. Similar band gaps can occur at the
intersection points of bands such as P and R.

The s polarization band structures also tend to the
plane-wave forms, but far more slowly than for p polar-
ization. Note, for example, how the fundamental s band
has a minimum value k.,;, which tends very slowly to
zero with a, as shown in Fig. 9.

The value of kni, may be estimated as follows. By
means of the substitution E}s) = Yg(ka)Bl(s), the system
(15) takes the form

B = . B
—t _ —1)4m —F— =0. (53
Jl(ka) +mZ ( 1) Sm—l(k’ko)ym(ka) ( )

=—00

Here, for small a, the Bessel functions are approximated
by the formulas [32]:

£
Te(ka) ~ (%) % ,£>0 (54)

and

Yo(ka) ~ 2 In (ka),
(55)

Ye(ka) ~ —% (%)l (€-1), £>0.

8 7.8 4
3 b 6,7
3.4 5.6
R 3,6
P 4
2
2+ 5
2,5
£ 12 1
o
]
1k 0,1
0 0
M
r X
0
M r X M

FIG. 8. The set of curves £ = |Qx/|, h = (m, n), for a square
array. The labels on the curves indicate the pairs (m,n) as
follows: 0 = (0,0), 1 = (-1,0), 2 = (0,-1), 3 = (0,1),
4 = (170), 5 = (_1a _1)1 6 = (*171), 7= (17 _1)7 and
8 = (1,1). The inset shows the irreducible octant of the first
Brillouin zone.
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s polarization

6
0.10 ,
5
0.05 1
4 Second
band gap
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0.2 0.4 0.6 0.8

Area Fraction

FIG. 9. The minimum (Kkmin) and maximum (kmax) values
of k along the acoustic band, as a function of area fraction
of the square array. k.;, represents the minimum value of
k along the first optical band, as a function of area fraction.
(kmin, Kmax, and k,lnin are defined in Fig. 3.) The dashed
curve represents kmin given by the formula (61). The inset
displays the the difference between kmin and the formula (61),
for 107 < f <1073,

The minimum of the lowest band for s polarization
is attained at the I' point, so that we consider the case
ko = 0. At this point, for k # K}, Vh, the lattice sums

S}/ are finite. Consequently, for small a we have 555) =0,
V£ # 0. The equation for gé’) is

S¥ (k,0)] 5) _
[1 + Yole ] BY =o, (56)

and we may have B{* # 0 if
2
—In (ka) + SY (k,0) = 0. (57)

From [16], we obtain the lattice sum S{ as

S (k,0)Jo(kE) = ~Yo(KE) + 13y — 4 —f;’,é—’f",fi,
h#0

(58)

where £ is a vector inside the unit cell. We have proved
in [16] that the lattice sums S} are independent of £, and
we choose

€ = d= min {&]}. (59)

ij=1,2

Note that (59) may be used for a general array. For a
square or hexagonal array the fundamental translation
vectors have the same length, |[€;| = |€;| = d.

The series in (58) converge as K}, 2*° and we will denote

its sum by o(k). In the limit of very small a, kmin is also
small and we may assume that Eq. (57) may be written
in the form

2 a 4 4
; In (E) + —Ez—A - Zg(kmln) =0. (60)

min

If we approximate o (kmin) by o(0), we obtain

Fmin ~ [—% In (a/d) + 0(0)] _1/2. (61)

Note how steeply this function tends to zero with a
(Fig. 9, plotted for the square array, for which o(0) =~
0.042).

C. Band-gap diagrams for concentrated systems

In Figs. 3, 4, and 5 we show band gap diagrams for a
ranging from 0.26 to 0.42. Our numerical results show the
first in-plane gap, for p polarization, opening up as a/d >
0.30 (see Figs. 4 and 5). We have analyzed particularly
the dependence of the gap size, defined as the ratio of the
gap width to the midgap frequency, on the area fraction
(Fig. 10). Note how this gap tends to increase strongly
as @ — 0.5, or f — w/4 (the area fraction for touching
cylinders).

For s polarization we note the existence of a first in-
plane band gap between k = 0 and a cutoff frequency
given by kmin. The dependence of kmin on the area frac-
tion is shown in Fig. 9. Note how the maximum and

14
& 10}
g
S
-
(=}
8
3
06
02F

0.2 0.4 0.6 0.8

Area Fraction

FIG. 10. Size of the two-dimensional photonic band gap in
a square array of perfectly conducting cylinders in air, as a
function of the area fraction. The first in-plane band gap for
p polarization (—) and the second in-plane band gap for s
polarization (- - - ) are shown. The size of the gap is defined
as the ratio of the gap width to the midgap frequency. The
vertical dashed line indicates the area fraction for touching
cylinders (f = w/4).
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minimum values of k for the lowest s polarization band
tend to a common value as f increases, with this band
tending to a straight line.

There is a second band gap, for s polarization, opening
up for small area fractions f 2 0.01 (see Fig. 3). The
size of this band gap as a function of area fraction is
displayed in Fig. 10. Both the first and second gaps open
with increasing area fraction, and both may well diverge
as the cylinders approach touching.

An interesting feature of the dispersion curves for s
polarization is that these curves tend to straight lines,
which are degenerate, apart from the lowest band. We
believe that the flatness of the s polarization bands is
due to their corresponding to cavity modes of the space
between the cylinders, and thus their frequency being
independent of the excitation conditions (i.e., of ko).

The first in-plane band gap for p polarization appears
and develops inside the first in-plane band gap for s
polarization, accordingly defining a common band gap
for both polarizations (this common band gap exists for
cylinder radii larger than 0.30). The appearance of the
first p polarization band gap is associated with a pro-
nounced flattening of the second p band in the region
XM.

D. Photonic band structure of hexagonal arrays

In Fig. 11 we display the free space dispersion curves
for hexagonal symmetry, and in Fig. 12 we give the dis-
persion curves for a hexagonal array of perfectly conduct-
ing cylinders of radius a = 0.34, in air. We used a trun-
cation order L = 8 in (15). For p polarization, from the
values of k along the acoustic band close to the I point,
we have obtained the value of the slope a ~ 0.838 77,
giving an effective dynamic refractive index N ~ 1.1922.
The area fraction is f = 2wa?//3 = 0.4194, and from
(42) we have Ny = 1.1914. Note the good agreement be-

o5

kd/=n
w
N
-
w
>
w
S SNA NP

2 L
25 _—~7 2
l- 0% 0
0
K r M K

FIG. 11. The set of curves k = |Q&|, h = (m,n), for
a hexagonal array. The labels on the curves indicate the
pairs (m,n) as follows: 0 = (0,0), 1 = (—1,0), 2 = (0,—1),
3=(0,1), 4 = (1,0), 5 = (—1,-1), 6 = (~1,1), 7 = (1, 1),
and 8 = (1,1). The inset shows the irreducible part of the
first Brillouin zone.

kd/n

K r M K

FIG. 12. Photonic band structure of a hexagonal array of
perfectly conducting cylinders in air, for p (—) and s (- - -)
polarization, with L = 8. The ratio of the cylinder radii to the
array constant is 0.34 (with the area fraction f = 0.419). The
first shaded region represents the first in-plane band gap for
p polarization, while the second shaded region is the second
in-plane band gap for s polarization.

tween the value of A for a higher truncation order, and
Ny from the dipole approximation. The Maxwell Garnett
formula (45) gives the value Ny = 1.5635, which differs
significantly from MNj.

Note that the fundamental p polarization band gap is
much smaller in Fig. 12 than in Fig. 4. Another sig-
nificant difference is that the photonic band structures
in the regions KT and I'M are much more similar. for
the hexagonal array than for the square array. We also
note the absence of band crossings and band separations,
other than at symmetry lines. Figure 12 retains no sign
of the intersection point at R in Fig. 11.

The first s polarization band gap is significantly larger
for the hexagonal array than for the square array. Note
that the changes to band arrangement near the point
T (in Fig. 11) are much more pronounced for s polar-
ization than for p polarization. For s polarization the
lower bands passing through 7" become associated with
the fundamental band, while the upper bands move off
to higher k values. A curious feature of both the s and
p structures in Fig. 12 is the existence of flatbands; we
plan to investigate the physics of these in more detail.

V. CONCLUSIONS

We have studied the propagation of electromagnetic
waves in arrays of perfectly conducting cylinders, concen-
trating on two aspects of their propagation characteris-
tics. First, we have used the lowest p polarization band to
define an effective refractive index and have shown that,
perhaps counterintuitively, this quantity does not agree
with the effective refractive index which results from elec-
trostatic calculations. We do not interpret this as mean-
ing that over 100 years of results based on homogeniza-
tion procedures devised by Lorenz and Lorentz are in-
correct, but rather that the case of perfectly conducting
inclusions represents a special, isolated case in homog-
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enization theory. Second, we have studied the photonic
band diagrams for both s and p polarizations over almost
the whole range of area fractions. For dilute systems, the
diagrams tend in a very satisfactory way to the freely
propagating plane-wave diagram, although with very in-
teresting polarization differences. For concentrated sys-
tems, the polarization effects are quite striking, with the
s polarization bands becoming very flat, while the p po-
larization bands remain nontrivial. We note the existence
of a common band gap between s and p polarizations for
cylinder radii larger than 0.30.

We are currently extending our studies to arrays of di-

electric circular cylinders, and also to elliptical cylinders.
Parallel investigations of lattices of spheres are in course.
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